半導體場效式生化感測元件

Semiconductor-Based Field-Effect Device for In-Vitro Biomolecular Sensing

王義舜、陳柏翰、林致廷 I-Shun Wang, Po-Han Chen, Chih-Ting Lin

近來對於醫療照護的需求與日俱增,各種新穎醫療照護技術的發展成為現今醫療科技的主軸。相關新式生物分子檢測中,免標記半導體場效感測元件 (label-free semiconductor field-effect sensor device) 為最具吸引性的技術之一。其快速、即時 (real-time)、高專一性與靈敏性等優點,搭配醫學與半導體技術的演進,於早期診斷之定點照護 (point-of-care) 與個人化醫學的實現上,提供了一個潛力極佳的平台技術。本文即針對免標誌半導體場效感測元件進行介紹,期能提供基本認識與進一步發展的基礎。

Within the demands of medical technologies, in-vitro diagnosis is important because it helps to physicians to determine diseases. As a consequence, various kinds of in-vitro diagnosis technologies have been proposed and evaluated. In different kinds of in-vitro diagnosis, label-free semiconductor field-effect sensing devices obtain attentions because of its characteristics of real-time, high sensitivity/selectivity, and low cost. These characteristics offer great potentials in the developing personal healthcare technologies. Therefore, this article aims to review recent developments in label-free field-effect biomolecular sensing devices and promote fundamental knowledge of related technologies.

一、簡介

隨著人口爆炸性的成長,各種傳染疾病及慢性 疾病正威脅著人類的生命和財產,如登革熱、糖 尿病與心血管疾病等⁽¹⁻³⁾。目前醫學上用以診斷及 治療的方式為使用酵素免疫分析法 (enzyme-linked immunosorbent assay, ELISA) 檢測人體內病原體 之去氧核醣核酸 (deoxyribonucleic acid, DNA) 或蛋 白質。而用於檢測 DNA 與蛋白質之技術絕大多數 會使用試劑去顯色用以判讀檢測物之濃度,如螢 光標記,酵素標記或放射化學物質等⁽⁴⁾。而透過這 「標記」的過程,不同濃度的抗原溶液會有對應 的抗體鍵結數,這些抗體會與標記物 (如酵素)鍵 結。透過此層鍵結,此儀器會發出單波長特定數目 的光來進行樣本的穿透,其中標記物之反應稱之為 放大反應,因此標記物的數量會直接影響光的穿透 率,所以不同濃度的溶液會有不同的穿透率,造成 不同的吸光值,透過此光學特性先進行曲線校正, 之後再利用回歸曲線找出未知溶液的濃度,來判讀 是否有疾病感染的發生。

縱使這些檢測技術具有高靈敏度和低檢測濃度 之優點,但其方法都免不了需昂貴的試劑和複雜的 操作程序導致無法即時獲得資訊;此外,這些檢測 方式都需要專業訓練人士代為操作,也很難與其他 功能模組做整合⁽⁵⁾。標記的過程還可能會影響被標 記物蛋白和抗原受體間的鍵結效率。因此,開發不 需要標記且仍具有敏感,可靠和高通量並可以區分 特定的生物分子之技術是非常有意義的。這將顯著 減少處理樣品 (如顯色、二次鍵結等)所需的時間 和成本,並免除待檢測分子的製備和修飾等相關步 驟。 與其他方法相比,即時、低成本且能同時快 速檢測多個標的物之免標記分子生物感測器具有成 為臨床診斷工具之巨大潛力⁽⁶⁾。

目前眾多免標記的感測方法,如表面電漿共振 (surface plasmon resonance, SPR)⁽⁷⁾、石英壓電晶體微天平 (quartz crystal microbalance, QCM)⁽⁸⁾、 electrochemical impedance spectroscopy (EIS)⁽⁹⁾,和 半導體場效元件 (field-effect device, FED)等,相關 研究仍如雨後春筍般不停地發展。其中,傳統利用 光學系統進行檢測的技術,如表面電漿共振的方 法,因為較難以與其他介面模組或樣品前處理系 統整合,使得它們在重點照護 (point-of-care)的發 展上難度較高。相比之下,半導體場效元件 FED 能採用互補式金屬氧化物半導體 (complementary metal-oxide-semiconductor, CMOS) 製程技術,使其 得以與其他電子資訊處理功能模組 (如藍芽傳輸系統) 整合在單一晶片上⁽¹⁰⁾,還能與樣品前處理 (稀 釋和過濾血球) 的微流道系統在印刷電路板上做結 合⁽¹¹⁾。而這些優點使得 FED 提供早期診斷與重點 照護一個有潛力的平台,以期達到早期發現進而治 療疾病與降低醫療成本之目的。

二、半導體場效感測元件之發展與分類

半導體場效感測元件的發展和現今半導體 工業息息相關,科學家 P. Bergveld 於 1970 年提 出了離子感測場效應電晶體 (ion-sensitive fieldeffect transistor, ISFET) 之概念⁽¹²⁾,由圖 1 所示 ISFET和金屬氧化物半導體場效電晶體 (metaloxide-semiconductor field-effect transistor, MOSFET) 之結構極為相似,利用參考電極和電解液取代 MOSFET 中之金屬閘極的部分。而為了能夠降低 環境雜訊的干擾和量測環境對感測元件的影響, 延伸式閘極場效應電晶體 (extended gate field-effect

圖 1. 半導體場效感測元件之發展。

圖 2. (a) n 通道 ISFET, (b) SiNW, (c) 電容式感測器和 (d) LAPS 之典型結構與輸出訊號。(1) 為初始之感測器信號, (2) 為和負電荷之待測物結合後之訊號和 (3) 為和正電荷之待測物結合後之訊號 Ab: 抗體; Ag: 抗原; ssDNA: 單股 DNA; dsDNA: 雙股 DNA⁽²⁰⁾。

transistor, EGFET) 就此應運而生;利用一簡單的感 測電極和電晶體做結合,可使感測元件和量測環境 做區隔,除了能有效降低來自量測環境的各種影響 外,還有對光不靈敏,相對簡單的隔離與封裝和 閘極感測電極可撓曲等優點^(13, 14)。而在 1990 年代 為了追求簡化製成步驟和一「平坦」的感測膜陣 列用以觀察離子濃度之梯度分布和細胞活動,電 容式感測器 (capacitive sensors) 和光定址電位感測 器 (light-addressable potentiometric sensors, LAPS)^{(15,} ¹⁶⁾。而 LAPS 是透過光束之照射半導體表面的部分 產生電子電洞對,並量測光電流的變化來觀測離子 濃度的變化。往後許多感測器之結構、間極絕緣層 的探討、感測薄膜和製程技術的演進等,都使得感 測器之效能有顯著地提升。C. M. Lieber 於 2001 年 提出了矽奈米線 (silicon nanowires, SiNW) 之元件 後(17),使得感測極限之濃度往更低濃度去突破; 隨著半導體製程之進步,追求更加細長之寬長比下 (W/L ratio) 和更好的閘極對通道控制能力,如鰭式 場效電晶體 (fin field-effect transistor, FINFET), 再 加上 2D 材料如石墨烯 (graphene) 的發現,使得感 測元件的性能又再次的提升。

相關半導體場效生物分子檢測元件,可依其元 件操作模式的不同,可以主要分為四大類:離子感 測場效應電晶體、矽奈米線、電容式感測器和光定 **北電位**感測器。其感測器結構多為使用電解溶液 (待測物端)和參考電極去取代原來之金屬閘極,利 用電解液中之電場或表面電位去改變半導體內電荷 之分布以達到感測之目的。FED 能夠檢測在閘極 表面直接發生的電荷或在德拜長度 (Debye length, λ_D) 中電荷的變化^(18, 19)。在大多數情況下,待測物 其本身帶有電荷,如 DNA 分子是在其磷酸酯骨架 上具有負電荷的離子,在雜交的情況下,與其分子 的電荷有效地影響施加到閘極表面的電荷。 這現 象導致場效應感測器的操作特性的改變 (例如,電 容感測器的電容或平帶電壓;FET 的臨界電壓或 汲極電流, SiNW 的電導或 LAPS 的光電流),如 圖2所示。

以圖 2(a) 為例,離子感測場效應電晶體之閘

極電壓由參考電極所給予,而所施予的電壓會改變 電晶體源極和汲極之間通道內的載子數目,進而改 變電晶體通道內的汲極電流。圖 2(a) 之黑色 1 號 電壓電流曲線為元件最初始知之電訊號,在其感測 表面若有帶負電的感測標的物 (如 DNA、帶負電之 抗原),需要施加較多之電壓,汲極電流才會開始 有明顯之上升 (紅色 2 號之電壓電流曲線);反之 亦然,當離子感測場效應電晶體表面帶有正電之感 測標的物 (帶正電之抗原),即可在施加較小的電 壓值時,看到汲極電流之上升 (藍色 3 號之電壓電 流曲線)。

由於矽奈米線之小尺度、高表面容積比和高靈 敏度之特性,常應用於檢測低濃度之標的物。以 P 型矽奈米線為例,通過施加的閘極正電壓或通過結 合在感測表面上帶正電荷的生物分子,在通道中會 因此而產生電荷載子(此情況下為電洞),進而造 成了矽奈米線之電導和電流降低。在另一方面, 施加閘極負電壓或帶負電荷的生物分子的結合會引 起電洞的積累,進而增加矽奈米線的電導和電流。 對於 N 型之矽奈米線之特性則和 P 型矽奈米線相 反。

電容式感測器為半導體場效感測元件中結構 最為簡單的種類,其角色對應於子感測場效應電 晶體的關係可類比成金屬氧化物半導體電容元件 (MOS) 之於 MOSFET 的關係。由於少了源極和汲 極,在其製備步驟上可簡化許多步驟,在其初期基 礎研究上相對方便許多。其操作方式為從參考電極 施予一直流電壓使電容式感測器操作在工作點上, 再施予一交流電壓來測量其電容變化:如圖 2(c) 所示,利用等效固定氧化物電荷會影響平帶電壓的 方式,去推算在感測器表面帶有少電荷,進而去反 推桿測標的物之濃度。

光定址電位感測器則是因為可以通過掃描光束 空間解析度去選擇特定之測量點,進而受到一定 程度的關注與發展。LAPS 和電容式感測器極為相 似,最大之不同為其須利用特定之光源(發光二極 體或回射光),產生要作為傳感器信號測量的交替 光電流。其操作方式為在參考電極與矽基板之間 接上直流電壓,給其不同的電壓,讓矽半導體從 反轉區 (inversion region) 掃到積聚區 (accumulation region),接著在元件的正面或背面用 LED 照射, 讓矽基板中產生電子電洞對,而未被複合的電子電 洞對將在空乏區 (depletion region)分開,而產生光 電流。在反轉區,因為有空乏區的內建電場存在, 所以未複合的電子電洞對在此分離,而形成光電 流。而在積聚區並沒有內建電場,所以電子電洞對 都將完全被複合掉,此時的光電流為零。利用量測 光電流之變化,以判讀溶液中之待測物之資訊。

三、半導體場效感測元件之限制

由於 FED 所要偵測之電荷必須在德拜長度 (與 離子強度成反比) 之內,且周圍溶液中的離子會屏 蔽掉待測物本身的電荷 (如 DNA 分子的負電荷)。 在僅含有1,0.1,0.01和0.001M濃度的一價離子 (例如 NaCl) 的電解液中,德拜長度分別約為 0.3, 1,3 和 10 nm。 德拜長度的這些值分別等於大約 1-, 3-, 9-和 30-mer 探針 DNA 的長度。隨著電解 質的離子強度的增加,保留在電雙層內的 DNA 電 荷的數目是減少的,換句話說,能被 FED 量測到 的電荷會隨著電解質的離子強度的增加而減少。 例如,在λ_D約為 0.8 nm 的緩衝溶液 (其離子濃度 約為 150 mM) 中,大部分 DNA 電荷將都會在德 拜長度之外。 因此在使用化學分子固定 ssDNA 分 子時候,須注意其長度,否則 DNA 雜交所偵測到 之電荷變化會變得不如預期的大。 相反的,如果 DNA 分子為平坦固定在表面時,則可以期待較高 的雜交信號。

而在蛋白質的檢測上,與 DNA 不同的是, 並非所有構成蛋白質的結構都帶有特定性質的電 荷。蛋白質之淨電荷是取決於其含有的帶電胺基酸 (amino acid)數量及其背景溶液的 pH 值,即等電點 (isoelectric point value, pI value)。當背景溶液 pH 值大於等電點時,則蛋白質呈現負電之靜電荷;當 背景溶液 pH 值小於等電點時,則蛋白質呈現正電 之靜電荷。每個胺基酸都各自具有不同的解離常 數,可以在緩衝溶液中離子化,一般而言,由帶正 電的精胺酸 (arginine)、組胺酸 (histidine) 和賴氨 酸 (lysine)以及帶負電荷的天門冬氨酸 (aspartate) 和麩胺酸 (glutamate) 來共同決定蛋白質的電荷和

圖 3. (a) 使用全面修飾 (AAM) 或選擇性表面改性 (SSM) FED 之生物分子檢測示意圖。(b) 使用 SSM (紅色) 和AAM (藍色) FED 量測多巴胺脂之訊號大小比較圖⁽²⁸⁾。

電學性質⁽²¹⁾。溶液在一定 pH 值範圍內,蛋白質的 形成通常會同時包含正電荷和負電荷。與 DNA 相 比,蛋白質的淨電荷是較小的。在離子濃度為 0.15 M 的情況下,某些蛋白質的尺寸(約 10-12 nm⁽²²⁾) 遠高於德拜長度($\lambda_{\rm D} \sim 0.8$ nm)。在這種情況下, 蛋白質電荷所在的位置將超出電雙層,並被小的 無機離子所屏蔽。因此,只有在低離子強度溶液 (< 10⁻²-10⁻³ M)下,才能使用 FED 來檢測。

此外,由於半導體場效感測元件只會感測到電 訊號之變化,其檢測結果容易被檢體中帶有相同電 荷之蛋白質或 DNA (干擾物)所干擾。因此,標靶 生物分子抓取代測物之專一性變得非常的重要;在 量測的過程中也要避免帶有相同電荷之干擾物直接 貼附在感測元件表面,對量測結果造成影響,因此 如何利用其他結構或方式提高感測之專一性,並提 高信號與雜訊的比值都是目前科學家致力於提升半 導體場效感測元件於臨床應用實現的瓶頸。

四、近期半導體場效感測元件之發展

1. 結構上的發展

為了使得感測元件能檢測到更低濃的的待測標 的物和能有更好對抗雜訊與非理想效應的能力,科 學家致力於研究如何增加感測器表面之電荷對通道 電流操控之能力⁽²³⁾。基本上,感測器的檢測極限 與信噪比 (signal-to-noise ratio, SNR) 成反比。在元 件微縮的同時,低頻雜訊的的干擾卻與時俱增, 低頻雜訊又是感測器靈敏度提升的主要限制因素 (²⁴⁾。因此,提高感測器的檢測精準度需要改善其 信號強度或降低和過濾雜訊。而近來已有研究透 過電容耦合之方式使用雙閘極 FET 將信號作放大
(²⁵⁾,也有些研究的實驗報告顯示了在使用雙閘極
FED 對溶液 pH 值變化的感測度增加,並超過能斯
特限制 (Nernst limit, 59 mV/pH) 特性^(26, 27)。

2. 修飾標靶分子方式的演進

除了在固定標靶生物分子上做不同化學物質 的測試與最佳化參數的研究外,有團隊開發了一 種有別於傳統全區域修飾 (all-area-modified, AAM) 之選擇性表面修飾 (selective surface modification, SSM) 的方法,並使要檢測之生物分子僅在 FED 上 和標靶生物分子做結合。使用自下而上的方式製 備 FED,並用蒸氣式的化學連接分子 APTMS 進行 處理以進行 FED 的表面改植。因此,化學連接分 子僅出現在通道表面。這些 SSM 製備的 FED 顯 示高跨導 (transconductance),並在生物素/抗生 物素蛋白和多巴胺/苯基硼酸鹽的結合實驗中證明 了此方式具有更快的反應時間,顯著改善了靈敏性 和有效降低樣品的需求體積 (5 µL)⁽²⁸⁾。

而為了固定化標靶生物分子,也有研究團隊針 對 FED 表面上矽烷基接頭的自組裝單層結構 (selfassembly-monolayer, SAM) 做改進。傳統之作法所 塗佈上之化學連接分子之方向性是隨機的,如圖 4(a) 所示;未對齊的 SAM 單層分子末端將顯著降 低電荷極化並在分子鍵結的過程中造成干擾,使 得檢測變得不太敏感。為了改進這個問題,有研 究團隊在 2013 提出了一種通過在將基板閘極 (bake gate) 電極接地的同時在晶片表面上約 1 mm 上的 金屬板上施加外部電壓來均化化學連接分子方向的 方法,如圖 4(b) 所示⁽²⁹⁾。在該研究中,透過施加 0.5 V 的電場 1 分鐘,然後關閉電場 30 秒為一個循 環的方式,在 30 個循環之後,其方向化之化學連 結分子之方向性可維持數小時甚至更久。再透過 DNA 雜交實驗中,每個階段產生了電流電壓曲線 的平行偏移證實其方向化之 FED 與未處理的裝置 相比,可將量測之靈敏度提高 10 倍,並有效增強 的檢測能力和可靠性。

3. FED 元件於臨床診斷之應用

目前已以許多研究指出現今已可以使用經過 處理之人體檢體透過免標記之方式去檢測疾病之 DNA 或蛋白質^(30,31)。然而對於定點照護 (pointof-care) 與個人化醫學的實現上,仍有一段距離 有待克服,如檢體的前處理和 FED 之間的訊號穩 定性等等。而台大的實驗團隊目前已結合為流道 系統與 FED 的元件開發出了一個多功能微流體控 制平台⁽¹¹⁾。全血在聚甲基丙烯酸甲酯 (polymethyl methacrylate, PMMA) 製成的微流體通道中處理 後,糖化血紅蛋白和血紅蛋白即可在平台上之 CMOS 矽晶片同時進行測量。在這個平台上,只 需要輸血量 5 µL 和 15 分鐘進行測試。其樣品需求 量減少了 300 倍,並成功實現於即時糖尿病的監 測,如圖5所示⁽¹¹⁾。

另一方面,FED 的複合 (multiplex) 檢測測能 力也是被認為是其優點之一,但是只有少數研究 開發大型可同時進行平行監測應用的平台。而台灣 積體電路製造股份有限公司 (Taiwan Semiconductor Manufacturing Company, TSMC) 近期已利用 0.18 微米製程技術完成一大小只有 7 × 7 mm² 之 1024 × 1024 陣列感測器平台。其平台可以在 90 秒內獲 取所有 FED 汲極電流,並利用雙閘極操作達到 84 mV/pH 之感測度。利用大量的感測器和高速率的 數據採集能夠實現濾波和降噪技術,以提高可靠度 和靈敏度⁽³²⁾。其平台也證明了利用半導體場效感 測器能實現一種小型化,便宜且大量多工運作的工 具;除了用於無標記檢測反應外,也可用於細胞粘 附和代謝研究⁽³³⁾。

最後利用 FED 的檢測晶片中,仍然存在許多 基本和技術限制和問題有待克服。如先前所提及, 由於半導體場效感測元件只會感測到電訊號之變 化,其檢測結果容易被檢體中帶有相同電荷之干擾 物干擾。並且在臨床醫學上,由於生物分子在真實 的生物樣品中的非特異性結合而產生之誤信號,; 或者在複雜液體中檢測未標記之生物標的物;抑或 考慮要如何消除干擾物對於感測元件所造成之雜訊 甚至是誤訊號等,因此持續在各領域如電化學、遺 傳學、分子物理學和數據處理等持續發展和並研究 其正確的理論模型仍是不可或缺的。

圖 4. 化學連接分子在 (a) 用電場方向化前與 (b) 用電場方向化後之比較圖⁽²⁹⁾。

圖 5. (a) 多功能微流體控制平台示意圖:其中包含了 (1) PMMA 微流體系統、(2) 壓 電微型馬達和 (3) CMOS 感測晶片。(b) 多功能微流體控制平台之照片:其尺寸 約為 20 cm × 15 cm × 5 cm。(c) PMMA 微流體系統之照片。 其尺寸為 50 mm × 50 mm × 4 mm⁽¹¹⁾。

參考文獻

- 1. Teoh, B.T., et al., *Journal of Clinical Microbiology*, **53**, 830 (2015).
- 2. Walker, I.F., et al., Value in Health Regional Issues, 15, 12 (2018).
- 3. Heidenreich, P.A., et al., Circulation, 123, 933 (2011).
- 4. Chen, H., et al., Biosensors and Bioelectronics, 24, 3399 (2009).
- De-Los-Santos-Alvarez, P., et al., Analytical and Bioanalytical Chemistry, 378, 104 (2004).
- 6. Qavi, A.J., et al., *Analytical and Bioanalytical Chemistry*, **394**, 121 (2009).
- 7. Masson, J.F., et al., Analytical Chemistry, 79, 612 (2007).
- 8. Agafonova, L.E., V.V. Shumyantseva, and A.I. Archakov, *Chemical Physics Letters*, **604**, 5 (2014).
- 9. Billah, M.M., et al., Sensors and Actuators, B: Chemical, 173, 361 (2012).

- 10. Huang, C.W., et al., Lab on a Chip, 13, 4451 (2013).
- 11. Kuan, D.H., et al., Lab on a Chip, 16, 3105 (2016).
- Bergveld, P., *IEEE Transactions on Biomedical Engineering*, BME-17, 70 (1970).
- 13. Chi, L.L., et al., Materials Chemistry and Physics, 63, 19 (2000).
- 14. Lue, C.E., et al., Microelectronics Reliability, 52, 1651 (2012).
- 15. Hafeman, D.G., J.W. Parce, and H.M. McConnell, *Science*, **240**, 1182 (1988).
- Schöning, M.J. and A. Poghossian, *Electroanalysis*, 18, 1893 (2006).
- 17. Cui, Y. and C.M. Lieber, Science, 291, 851 (2001).
- 18. Bergveld, P., Biosensors and Bioelectronics, 6, 55 (1991).
- Poghossian, A., et al., *Applied Physics A: Materials Science and Processing*, 87, 517 (2007).
- Poghossian, A. and M.J. Schoning, *Electroanalysis*, 26, 1197 (2014).

- 21. Goda, T. and Y. Miyahara, *Analytical Chemistry*, **82**, 8946 (2010).
- Casal, P., et al., *Philosophical Transactions of the Royal Society* A: Mathematical, Physical and Engineering Sciences, **370**, 2474 (2012).
- 23. Clement, N., et al., Applied Physics Letters, 98, (2011).
- 24. Wei, C., Y.Z. Xiong, and X. Zhou, *IEEE Transactions on Electron Devices*, **56**, 2800 (2009).
- Spijkman, M.J., et al., Advanced Functional Materials, 20, 898 (2010).
- 26. Knopfmacher, O., et al., Nano Letters, 10, 2268 (2010).
- 27. Duarte-Guevara, C., et al., *Analytical Chemistry*, **86**, 8359 (2014).
- 28. Li, B.R., et al., Biosensors and Bioelectronics, 45, 252 (2013).
- 29. Chu, C.J., et al., Nano Letters, 13, 2564 (2013).
- Mohamadi, M., A. Mostafavi, and M. Torkzadeh-Mahani, Bioelectrochemistry, 101, 52 (2015).
- 31. Lei, Y.M., et al., Biosensors and Bioelectronics, 91, 1 (2017).
- 32. Duarte-Guevara, C., et al., *Sensors and Actuators, B: Chemical*, **250**, 100 (2017).
- Cheah, B.C., et al., *IEEE Transactions on Biomedical Circuits* and Systems, 10, 721 (2016).

王義舜先生現為台灣大學電子工程學 所博士候選人。

I-Shun Wang is currently a Ph.D. candidate in the Insitute of Electronics Engineering at National Taiwan

University.

陳柏翰先生為國立台灣大學電子工程 學博士。

Po-Han Chen received his Ph.D. in electronics engineering from National Taiwan University.

林致廷先生為美國密西根大學安娜堡 分校電機工程博士,現任國立台灣大 學電機工程學系教授。

Chih-Ting Lin received his Ph.D. in electrical engineering from University

of Michigan- Ann Arbor. He is currently a professor in the Department of Electrical Engineering at National Taiwan University.